The ISO spectrum of Uranus and Neptune between 2.5 and 5 μ m

Th. Encrenaz¹, B. Schulz², P. Drossart¹, E. Lellouch¹, H. Feuchtgruber³, S. K. Atreya⁴

¹DESPA, Observatoire de Paris, F-92195 Meudon ²ISO Data Centre, ESA, PO box 50727, E-28080, Madrid ³MPIE, Postfach 1603, D-85740 Garching ⁴University of Michigan, Ann Arbor MI 48109-2143, USA

Spectra of Uranus and Neptune were recorded in May 1997 using ISOPHOT in the spectroscopic mode (PHT-40). A preliminary reduction of these data can be found in Encrenaz et al. (ESA SP-419, 125, 1997). Both spectra show a maximum of flux in the 2.7 μ m region (which is a window between CH₄ absorption bands) and indicate a very low value of the albedo in this spectral range. In addition, SWS data of Uranus, taken with AOT SWS02, exhibit several H₃⁺ emission lines in the vicinity of 3.3 μ m. Taking this result into account, the absence of noticeable emission at 4 μ m (which corresponds to the Q-branch of the H₃⁺ band) in the PHT-S spectrum of Uranus can provide a constraint on the temperature of Uranus' upper stratosphere.