Water in Space as seen by ISO

José Cernicharo DAMIR Instituto de Estructura de la Materia CSIC cerni@damir.iem.csic.es

The Quest for H₂O

- Detected in 1969 by Cheung et al through the maser emission at 22 GHz of the 6₁₆-5₂₃ transition (Eupp=609 K, Aij=1.9 10-9)
- Observed in small regions with peculiar physical conditions (shocks)
- Earth atmosphere blocks almost all millimeter and submillimeter lines of water
- Most interesting lines in the far infrared and in the mid-infrared (bending mode). High Aij's, high energy levels, high frequencies

Water in Orion observed with the 30-m telescope (beam 14"). Cernicharo et al., 1994

ISO capacities for the observation of water

- SWS : high excitation pure rotational lines and the ro-vibrational lines of the stretching and bending modes
- LWS : pure rotational lines
- ISOCAM and LWS : Water Ice

• Main goal in the GT and the open time for many observers

WATER IN WARM REGIONS AROUND HIGH MASS STARS

Water in High Mass Star Forming Regions

The pumping of H_2O is strongly affected by the dust grains absorption/emission.

Radiative transfer models have to include these effects as they become crucial as soon as the dust opacity is ≈ 1 .

González-Alfonso et. al. 1998, ApJ Letters, 502,L169

 ${\rm H_2O}$ absorption-emission at 6 $\mu{\rm m}$ in O-rich CSEs

González-Alfonso et al., 1999

Cernicharo et al., 2006

ASTRONOMY AND ASTROPHYSICS

Letter to the Editor

Widespread water vapour absorption in SgrB2¹

J. Cernicharo¹, T. Lim², P. Cox³, E. González-Alfonso^{4,5}, E. Caux⁶, B.M. Swinyard⁷, J. Martín-Pintado⁵, J.P. Baluteau⁸, and P. Clegg⁹

L26

Fig. 3. a) and b) Results of model calculations showing the line over continuum flux ratio of four $o-H_2O$ transitions (labelled with their wavelengths) as a function of kinetic temperature. c) Model spectrum for a cloud with an external absorbing shell (see text for details)

Fig. 2. LWS Fabry-Perot observations of the central position of SgrB2. (a) The 2_{12} - 1_{01} and 3_{03} - 2_{12} lines of water at 179.52 and 174.6 μ m, respectively; (b) the 5/2-3/2 and 7/2-3/2 lines of the ${}^{2}\Pi_{3/2}$ state of OH at 119 and 84 μ m; (c) the 2_{12} - 1_{01} H₂¹⁸O line at 181.05 μ m

Cernicharo et al., 2006

$N(H_2O)=1.8 \ 10^{17} \ cm^{-2}$

n183 310	p100.010	o380.197	0448.001	0556.936	p752.033	p916.171	p970.300	p987.918	0273.193	p269.273	o259.984	0257.790	p248.241	n243.972	020-2120	orreprid	0180.488	020'RJ.TO	0174.914	020.47.10	p158.309	002-0010	CRT-OCID	p146.919	p144.518	p138.527	0130.434	0134.935	p126.713	p125.353	0121.719	o113.537	p111.626	o108.073	p100.983	0100.913	o99.492	p95.626	p09-900	o75.380	p71.066	067.269	p67.089	o67.437	p61.808	o58.698	p57.636 p56.324	p46.483	045.111	040.690
		8	5% -					MAN W	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>																																				Tr	=4(~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
																											n(H n(H n(H n(H n(H n(H n(H	$I_{2} = 6$ $I_{2} = 3$ $I_{2} = 1$ $I_{2} = 8$ $I_{2} = 4$ $I_{2} = 2$ $I_{2} = 2$ $I_{2} = 1$ $I_{2} = 5$	$\begin{array}{c} 4 & 10^6 \\ 2 & 10^6 \\ 6 & 10^6 \\ 0 & 10^6 \\ 0 & 10^6 \\ 0 & 10^6 \\ 0 & 10^6 \\ \end{array}$																Т _к -	=10	0 K			
ווועעע									>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>																		~	N(H	20)	=9	10 ¹						V								TK		о к	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
וויייו									M ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~																		~																				о к			
ייינונ									M ~ ~ ~ ~ ~ ~ ~ ~															65%																							о к			

COLD WATER

- FIRST DETECTION OF WATER VAPOR IN COLD DARK CLOUDS WITH ISO !!
- SWAS & ODIN have not detected H₂O towards these objects (only upper limits)

ISO/SWS data on Sgr A*

(Moneti, Cernicharo & Pardo ApJ Letters, 2001)

Low Mass Star Forming Regions

Barlow et al., 1996; Neufeld et al., 1996

Fig. 1.—ISO LWS spectrum of Arp 220, where the most prominent line features are identified (see text). The gray line shows the adopted baseline (continuum level). Wavelengths in this and following figures are rest wavelengths.

H₂O in the Solar System

- First detection of stratospheric H₂O on giant planets and Titan.
- External source of oxygen required.

E

Water! Water! Everywhere!

Giant Planets

Circumstellar envelopes

Ultra-luminous galaxy Arp 220

Shocks (Orion)

cold interstellar medium

Now waiting for Herschel!

