Star formation and early evolution in the ISO data-base Brunella Nisini

INAF-Osservatorio Astronomico di Roma

Outline:

- Importance of MIR and FIR for star formation studies
- Overview of observations performed by ISO
- Availability of archive data for star formation studies
- Example of a survey programme exploiting the ISO archive
 - Comments and conclusions

The Infrared view of Star forming systems

t = 0 yr
collapsing dense core

t = 10⁴ - 10⁵ yr protostellar phase (Class 0/I)

external heating from

heating due to shocks (accretion and outflows)

t = 10⁶ - 10⁷ yr
pre-main sequence
 phase
 (Class II/III)

heating due to stellar photons

Isolated star formation: Interaction (proto-)star with its envelope
 Collective star formation: Census of embedded objects, IMF

Fields covered by ISO Observations

- Pre-stellar cores
- Characterization of young stellar objects
- Census of protostars, IFM
- Outflows
- Pre-main sequence stars and circumstellar disks

 Þ for a total of 830 hrs (2530 observations)
 Þ only ~20% of observations published (in ~137 refereed articles)

Pre-and proto-stellar cores

• 15 OT proposals using PHT and CAM
• 83 hrs I SO time, 188 observations
• ~22% of observations published

Dust emission, temperature profiles
Cores internal structure through absorption

measurements

Still to be done:

 Comparison between starless and protostellar cores

Pre-stellar Cores imaging with PHT-C

Pre-stellar Cores structure with CAM

Exploiting the ISO data Archive

Siguenza, 24-27 June 2002 Brunella Nisini

Study of young stellar objects

•29 GT+ OT proposals using the four instruments
•257 hrs of ISO time, 766 observations
•~20% of observations published
BUT
•only 5% of PHT observations published

Gas and dust features from protostellar environments

Spectral Energy Distributions (SEDs)

Still to be done:

Spectra of young stellar objects (YSOs)

SWS spectra of dust/gas absorption features

First detection of water vapour lines

Gas/dust abundance ratios

Physical conditions of the warm circumstellar gas

Exploiting the ISO data Archive

Charles Construction

Outflows and HH objects

.15 GT+ OT proposals using SWS, LWS and CAM

127 hrs of ISO time, 259 observations
~12% of observations published

Study of the shock interaction between jets and ambient medium

•Trace the gas+dust cooling in the post shocked gas

Still to be done:

 γ CAM H_2 0-0 lines imaging γ Emission from shock heated dust (CAM, LWS)

CAM H₂ 0-0 lines imaging

Warm gas cooling through LWS

L1157 outflow μm⁻¹) 9 color: H_2 6.9 μ (ISOCAM) 2 contours: CO J=2-1 (IRAM - 30m) F_x(10⁻¹⁹ W cm⁻ 8 1 0.25 68°06'00' 0 150 170 180 190 140 160 0.2 wavelength (μm) 68°04'00' (Giannini et al. 2001) 0.15 *Ionic lines in HH objects* 68°02'00' **HH80 HH81 H80N** [**OI**] 64 63.0 63.0 0.1 68°00'00' [OIII] Flux (10⁻¹⁹ W cm⁻² µm⁻¹ [NII] 67°58'00' 20^h39^m20^s 20^h39^m00^s 20^h38^m40^s 1.0 0.8 [OI] 0.6 0.4 0.2 0.0 [**OI**] α (J2000) (*Cabrit et al. 1998*) [CII] 156 157 15 Wavelength (سمر) (Molinari et al. 2001) **Exploiting the ISO data Archive** Siguenza, 24-27 June 2002 Brunella Nisini

Infrared Space Observatory Coalair **Census of YSOs**

•29 GT+ OT proposals using PHT, CAM and LWS
•171 hrs of ISO time, 292 observations
•~22% of observations published

Discover the embedded population of YSOsLuminosity functions of star forming regions

Still to be done:

•Extend the study to other regions for comparison and catalogue the mid-I R source population

(Bontemps et al. 2001)

Other investigated regions:

Cha I (Persi et al. 2000)
R CrA (Olofsson et al. 1999)
Serpens (Kaas et al. 1999)

Brunella Nisini

Exploiting the ISO data Archive

Siguenza, 24-27 June 2002

Pre-main sequence stars

•23 GT+ OT proposals using the four instruments

- 184 hrs of ISO time, 1009 observations
- ~17% of observations published

SEDs: Infrared excesses in the stars envelopes .Circumstellar disks **Circumstellar** gas excitation **Dust reprocessing by UV photons**

Still to be done:

Catalogue of observations (SEDs, Line list) for T Tauri stars

Modelling the SEDs of HAeBe

H₂ from T Tauri and HAeBe disks

Survey of the Far Infrared Spectra of Young Stellar Objects

Objectives:

1 Study the gas excitation mechanisms in the circumstellar environments of different classes of sources _ statistical approach

1 Define how the different gas cooling channels evolve with the source age

1 Constrain the SEDs of YSOs

1 Provide a database for future space missions

Analyzed sample

_ 56 sources in different evolutionary phases

17 Class 0 sources

(out of the 45 listed by Andre` et al. 2000)

• 11 Class I sources

(all the low luminosity (L< 50 Lo) from the LWS-GT observations)

· 26 Class II sources (Herbig Ae/Be)

(out of the 108 known (The` et al. 1994)

$\gamma \mbox{Full LWS grating scans of star + outflow system}$

References: Lorenzetti et al. 1999, 2002; Giannini et al. 1999; Giannini, Nisini, Lorenzetti 2001; Nisini, Giannini, Lorenzetti 2002; Elia et al. 2002

Low mass embedded young stellar objects (Class O/Class I)

Exploiting the ISO data Archive

Criteria to distinguish Class 0 protostars:

For Class 0 sources:

$$\cdot L_{FIR} \sim 10^{-2} L_{bol}$$

$$\cdot L_{\rm mol} / L_{\rm bol} > 5 \ 10^{-3}$$

•X(H2O) > 10^{-5} **P** H₂O traces temporal scales of the order of 10^4 - 10^5 yrs

Class II sources of intermediate mass (Herbig Ae/Be)

➤ densities < 10⁴ cm⁻³

➤Mainly atomic emission

Molecular emission only towards density peaks

➤excitation mainly due to
stellar photons

Brunella Nisini

Unfrared Sparse Observedory E caso

Exploiting the ISO data Archive

Siguenza, 24-27 June 2002

Conclusions:

A lot of work still remain to be done with the ISO data

Most needed:

γ COMPLETE SURVEYS OF CLASSES OF OBJECS
 γ SEDs (four instruments)
 γ complete line lists from SWS+LWS spectra
 γ catalogues of embedded sources observed with CAM

BUT:

 γ understand which fraction of the data are scientifically useful (e.g. PHT data or spectroscopic data with small integrations)

 γ interaction with P.I. to become aware of possible problems (why these data have not been published?)

