next up previous contents index
Next: G. IDA SQL-Queries: Worked Up: gen_hb Previous: E.3 Other Products


F. Quaternions

Some explanation of how the pointing (as given in the IIPH and other similar files) is calculated is presented here.

The attitude of a satellite is usually expressed by astronomers (and by FITS standard) in terms of the 3 angles: $RA$, $DEC$ and $ROLL$, that specify the orientation of the instrument in the inertial J2000 frame. $RA$ and $DEC$ are the usual astronomical equatorial coordinates specified in degrees, while $ROLL$ is the angle, measured anticlockwise, between north and the spacecraft z-axis (see Figure 3.2). This uses the normal astronomical definition of East (to the left).

Operationally, on the other hand, attitudes are specified in terms of 4-component `quaternions':


\begin{displaymath}
Q = (Q(1), Q(2), Q(3), Q(4))
\end{displaymath} (F.1)

that provide the most concise representation of the series of rotations that are required to specify the satellite attitude. For a rotation of D degrees about an axis specified by the direction cosines $l,m,n$ the quaternion components are given by


\begin{displaymath} Q(1) = l \times sin(D/2) \\
\end{displaymath} (F.2)

\begin{displaymath}
Q(2) = m \times sin(D/2) \\
\end{displaymath} (F.3)

\begin{displaymath}
Q(3) = n \times sin(D/2) \\
\end{displaymath} (F.4)

\begin{displaymath}
Q(4) = cos(D/2)
\end{displaymath} (F.5)


The resultant quaternion, $Q_{ab}$, of successive rotations $Q_a$ and $Q_b$ is the product of a $4\times 4$ matrix, each of whose elements is one of the elements of $Q_b$, and the $4\times 1$ matrix representation of $Q_a$, i.e.:


\begin{displaymath}
Q_{ab} = Q_a \times Q_b =
\left\vert \matrix{ \ Q_b(4) & ...
..._a(1) \cr Q_a(2) \cr Q_a(3) \cr Q_a(4) } \right\vert
\bigskip\end{displaymath} (F.6)

The Attitude and Orbit Control System (AOCS) delivers instantaneous estimates of the Star-Tracker quaternions $STRQ$ that define the STR J2000 pointing. These have to be combined with the STR/QSS misalignment quaternions $STRQSSQ$ and with any of the QSS/Instrument alignment quaternions (one per aperture):

-
$QSSCAMQ$
-
$QSSLWSQ$
-
$QSSPHTQ$
-
$QSSSWSQ$

[$\times$ any raster point quaternion $RPQ$] to give a resultant quaternion, $Q$, that defines the orientation of an instrument in the inertial frame.

Thus, for example:


\begin{displaymath}
(CAM) Q = [RPQ\times ] QSSCAMQ \times STRQSSQ \times STRQ
\end{displaymath} (F.7)

defines the orientation of the (CAM) x-, y- and z-instrument axes. If $<i>$, $<j>$ and $<k>$ are the instrument axis unit vectors in the J2000 inertial frame, then:


$\displaystyle <X> = (Instrument) Pointing direction$      
$\displaystyle = (RA,DEC)$     (F.8)
$\displaystyle <Y> = (Instrument) y-axis$     (F.9)
$\displaystyle <Z> = (Instrument) z-axis$     (F.10)

where


$\displaystyle <X> = cos(DEC)*cos(RA)*<i> + cos(DEC)*sin(RA)*<j> + sin(DEC)*<k>$     (F.11)
$\displaystyle sin(DEC) = 2*(Q(1)*Q(3)-Q(2)*Q(4))$     (F.12)
$\displaystyle cos(RA)*cos(DEC) = Q(1)*Q(1)-Q(2)*Q(2)-Q(3)*Q(3)+Q(4)*Q(4)$     (F.13)
$\displaystyle sin(RA)*cos(DEC) = 2*(Q(1)*Q(2)+Q(3)*Q(4))$     (F.14)
$\displaystyle cos(ROLL)*cos(DEC) = -Q(1)*Q(1)-Q(2)*Q(2)+Q(3)*Q(3)+Q(4)*Q(4)$     (F.15)
$\displaystyle sin(ROLL)*cos(DEC) = 2*(Q(1)*Q(4)+Q(2)*Q(3))$     (F.16)

These instantaneous attitude estimates are given in the IIPH columns XRA, XDEC and XROLL.


next up previous contents index
Next: G. IDA SQL-Queries: Worked Up: gen_hb Previous: E.3 Other Products
ISO Handbook Volume I (GEN), Version 2.0, SAI/2000-035/Dc