THE EMISSIVITY OF MARS AND CALLISTO IN THE FAR INFRARED

M. Burgdorf¹, Th. Encrenaz², J. Brucato³, E. Lellouch², H. Feuchtgruber⁴, G. Davis⁵, B. Swinyard⁶, Th. Müller¹, Th. de Graauw⁷, P. Morris⁷, S. Sidher⁶, M. Griffin⁸, L. Colangeli³, V. Mennella³

¹ISO Data Centre, Astrophysics Division, ESA, Villafranca, Spain.
²DESPA, Observatoire de Paris, Meudon, France.
³Osservatorio Astronomico di Capodimonte, Napoli, Italy.
⁴MPI Extraterrestrische Physik, Garching, Germany.
⁵University of Saskatchewan, Saskatoon, Canada.
⁶Rutherford Appleton Laboratory, Chilton, UK.
⁷Lab. for Space Research, Groningen, Netherlands.
⁸Queen Mary and Westfield College, London, UK.

Infrared spectra of Mars were taken with the two complementary spectrometers onboard the European Space Agency's Infrared Space Observatory, ISO, both in moderate- and high-resolution mode. From the strengths of the observed water lines we derived information about the vertical distribution of water vapor and on the emissivity of the dust/surface system in the far infrared. The emissivity values obtained with this method were then compared with laboratory spectra of several minerals.

A complete spectrum of Callisto from 50-180 μ m is presented. It shows very good overall agreement with a model originally developed to match the far-infrared spectra of asteroids. Slight discrepancies between observation and model at certain wavelengths are discussed.