ISO and the Cosmic Infrared Background

Hervé Dole University of Arizona MIPS/SIRTF Instrument Team

hdole@as.arizona.edu http://lully.as.arizona.edu/~hdole

Outline

OExtragalactic Background Light OMIR Surveys Source Counts Galaxy Population **OFIR** Surveys Source Counts Galaxy Population Fluctuation Analysis **O**Models ○Potential of I SO data **ONext Step: SIRTF**

The Extragalactic Background Light

Extragalactic Background Light

ONature

- Integrated Emission of
 - □ all galaxies
 - □ at every redshift
- 🖵 I sotropic
- □ Integrate the history of galaxy formation and evolution
- Different from CMB !

OQuestions

- □ How and when galaxies form ? How do they evolve ?
- **\Box** How do evolve the Luminosity Function (w/ z & λ)?
- ❑ What is the nature of the galaxies w/ z?
- Which population contributes at what level to the Extragalactic Background Light ?
- □ What is the global star formation rate (SFR) history?

Extragalactic Background

Why Deep Infrared Surveys ?

OLocal Universe

- 30% of the total energy output of galaxies emerges in the Mid- to Far- Infrared
- Optical/UV observations relevant

OCosmic Infrared Background

More (or equal) energy output in the IR than in the optical/UV it tells us that the dust plays an important role in the processes of galaxy formation/evolution

IR observations: a key to understand these processes

ISO Cosmological Surveys

ISO Mid Infrared Surveys

Mid Infrared Surveys

Ο15 μm More relevant for cosmological studies Favorable K-Correction Franceschini et al, 2001 2 **O**7 μm More stellar contamination K-correction 1 Less favorable K-correction 0.5 I nactive Spiral at 15 μm M82 at 15 mm M82 at 7 µm 0 1 0.5 \mathbf{Z}

ISOCAM 7 mm

Lockman Hole 0.0025°2

DISTANT BUT POWERFUL INFRARED GALAXIES

ISO observation (red) and ground-based infrared observation (blue) Credit: ESA/ISO and ISOCAM (7 microns), University of Hawaii 2.2-metre telescope (2 microns) and Y. Taniguchi et al. ESA/ISO 97:8/1

Taniguchi et al, 97

HDF-S 0.005^{o2}

Oliver et al, 2002

27-Jun-2002

Hervé Dole, University of Arizona

ISOCAM 15 mm

HDF-S

0.005^{02}

Fadda et al, in prep

Oliver et al, 2002

15 mm Source Counts

Hervé Dole, University of Arizona

ELAIS MIR Source Counts

Serjeant et al, 2000

(see also Oliver et al, 2002)

15 mm Sources

Hervé Dole, University of Arizona

Star Formation Rate

15 mm Universe

OSource Counts

- □ Strong Evolution below 1 mJy
- **O**Sources and Evolution
 - \Box z distribution: between 0.5 and 1.2; z median = 0.8
 - **<** 20% AGNs
 - \Box 75% LI RG, SFR ~ 100 M $_{\odot}$ /yr
 - Comoving light density increased by 70 ±35 from z=0 to z=1
 At z=0, LI RGs represent only 2% of bolometric luminosity density
 At z=1, LI RGs represent a major contributor
- OCI B
 - \square ~ 70% CI B resolved at 15 μm
 - \square 15 μm sources contribute to ~ 70±30% CI B at 140 μm

ISO Far Infrarcd Surveys

Far Infrared Surveys

Ο 50-100 μm

Peak of rest-frame emission from obscured SF ~60-80 μm

Ο100-200 μm

- Advantageous K-correction
- Cool galaxies
 - □ Local cool galaxies
 - **Redshifted SB**

OFIR

Total Bolometric Luminosity: Unbiased Measurement

SA57 at 60 and 90 mm

Linden-Vornle et al, 2000

Hervé Dole, University of Arizona

ELAIS 90 nm Source Counts

60 and/or 90 μm Source Counts:

Kawara et al, 1998 Efstathiou et al, 2000 Juvela et al, 2000 Linden-Vornle et al, 2000 Serjeant et al, 2000 Matsuhara et al, 2000

FIRBACK at 170 mm

170 nm Source Counts

27-Jun-2002

Hervé Dole, University of Arizona

Lockman Hole at 90 and 170

102

Multi 1 maps in the FIR

Cirrus/Source SEDs

27-Jun-2002

Fig. 5. Cirrus spectrum and source spectra in the field EBL22 Fig. 6. Cirrus spectrum and source spectra in the field EBL2

Serendipity Sources: Cold, Low L

90 mm LF

- Blue Dash-Dot: Arp220 (RR, 2000)
- Purple: AGN (RR, 2000)
- 27-Jun-2002

170 nm Sources

ORedshift

- ❑ Most z < 0.3
- **Some** 0.3 < z <1
- A Few z > 1

Kakazu et al, 2002
Sajina et al, 2002
Chapman et al, 2002

OLuminosity

Local: L < 10¹¹L_o
 Higher-z: L > 10¹¹L_o
 A few HyLIGs
 Serjeant et al, 2000
 Kakazu et al, 2002

Fluctuations: Why Bother ?

Predicted Redshift Distribution of Sources Creating the Fluctuations at 170 μm

CIB Fluctuations at 170 mm

Fluctuations at 90 and 170

Fluctuation Analysis at 170 mm

Constraints of the source counts' faint end at 170 µm in the Lockman Hole using simulations to fit the observed fluctuations

Matsuhara et al, 2000

Fluctuations of CIB

\bigcirc 90 and 170 μ m

- Fluctuations Detected w/ High S/N
 - Extension of Source Counts to Lower Fluxes
 - □ Color of CI B Fluctuations
- **Ο**170 μm
 - □ Clustering Detected in FIRBACK N1/N2
- **OAII** Cases
 - Foreground Removal limits Larger Scales
 - FIR Observations limited by Sky Fluctuations
 - □e.g Herbstmeier et al, 98; Kiss et al, 2001

Models

OISO Data strongly constraint models

Counts at 15, 170 μm

 $\hfill\square$ Also counts at 7, 60 & 90 μm

Redshift Distributions at 15 & 170 μm

 \square Fluctuations of the CIB at 90 & 170 μm

OCI B SED

OModels

(1st auth) Chary, Devriendt, Dole, Franceschini, Guiderdoni, Malkan, Pearson, Takeuchi, Totani, Roche, Rowan-Robinson, Tan, Wang, Xu

□ Lagache, Dole, Puget 2002 (submitted)

□ Franceschini et al, 2001

Chary & Elbaz, 2001

Evolving LF to Fit ISO Data

Lagache, Dole, Puget, 2002 (sub)

Fit of:

- 15, 60, 90, 170, 850 μm
and 1.2 mm Source Counts
- Redshift Distributions
at 15 and 170 μm
- CI B SED

- CI B Fluctuations

Source Counts

Star Formation Rate

The Potential of ISO Data for Cosmology

Published Data

ORe-Analysis of Published Data

Better understanding of I SO detectors e.g. Lari Method, SLICE

HDF-S I SOCAM
 Oliver et al, 97 – Oliver et al, 2002

Lockman Hole I SOPHOT
 Kawara et al, 98
 Matsuhara et al, 2000
 Rodighiero et al

Reexplore / Correlate Data

○ Influence of Foregrounds

Herbstmeier et al, 98

□ Kiss et al, 2001

Nature of the Sources LIRGs

O Extragalactic Background

Multi λ approach
 Matsuhara et al, 2000, Juvela et al, 2000
 Knowledge of CI B properties in I SO data allows discovery in I RAS data
 Miville-Deschênes et al, 2002

Unpublished Results

OGalaxy Clusters

Stellar Populations, SZ, Arclets, intermediate and highz Clusters, search for Early Clusters

OQuasars

Dust Mass, z>4, radio-quiet, low L radio, photometry

OULI RGs, FSS-I RAS

□ SED, I dentification, Power Source

OGalaxies

□ Ellipticals, Reds, Young, Faint Blue μJy radio sources

Preparation - Comparison

OSI RTF

Launch: Next January

OHerschel

Launch: March 2007

OPreparation / Comparison - Intercalibration

Like I SO/COBE/I RAS

e.g. Lagache & Dole, 2001

The Next Step: SIRTF

SIRTF

Extragalactic Background

IRAS, ISO, SIRTF

IRAS **ISO** SIRTF 7.5′ 1a **MIPS** 160 mm I RAS 100 μm ISO 170 μm **MIPS** 1b 70 mm IRAS 60 µm I SO 90 μm **MIPS** 1c 24 mm Dole, Lagache, Puget, 2002 in p₄₇

Hervé Dole, University of Arizona

27-Jun-2002

I RAS 25 μm

Panchromatic IR Sky

Simulated sky: 5 squares degrees

MIPS 24 mm

MIPS 70 mm

MIPS 160 mm

Dole, Lagache, Puget, 2002 in prep

+ IRAC: 4 filters

SIRTE Redshift Distributions @ 24

nm

Hervé Dole, University of Arizona

Resolution of the CIB

OPredictions

	24 m m	70 m m	160 m m
%	62%	47%	19%

Lagache, Dole, Puget, 2002 (sub) Dole, Lagache, Puget, 2002 in prep

O15 μm

□ 70% w/ I SOCAM at 15 μm (Chary & Elbaz, 2001)

Ο170 μm

□ 4-8% w/ I SOPHOT at 170 µm (Dole et al, 2001)

Courtesy G. Rieke

IRAS 1984 vs ISO 2000

 $\lambda = 100 \ \mu m$ t = few s/sky pix r = < 4.5 arcmin Hervé Dole, University of Arizona λ = 170 μm t = 256 s/sky pix r = < 92 arcsec